



# Applied Sciences

---

Awais Hamza



# Introduction to Science

---

- The word **science** comes from the Latin word *scientia* meaning **knowledge**.
- Science is a **systematic study of the natural world**, based on **observation, experimentation, and reasoning**.
- It helps us **understand the universe**, explain natural phenomena, and apply knowledge for human welfare.



# Branches of Science

---

- **Physical Sciences** – study of non-living things
  - Physics (matter, energy, forces)
  - Chemistry (composition, structure, reactions of matter)
  - Astronomy (study of space, planets, stars)
- **Biological Sciences** – study of living organisms
  - Zoology (animals)
  - Botany (plants)
  - Microbiology (microorganisms)
  - Human Biology



# Branches of Science

---

- **Earth Sciences** – study of earth and its environment
  - Geology (rocks, earth structure)
  - Meteorology (weather, climate)
  - Environmental Science



# Importance of Science

---

- Explains natural phenomena.
- Improves human life through technology, medicine, and agriculture.
- Helps solve global issues like climate change and energy needs.
- Develops **critical thinking** and **problem-solving skills**.



# What is Physics?

---

- Physics comes from the Greek word *physis* meaning **nature**.
- It is the branch of science concerned with the **study of matter, energy, motion, and the fundamental forces of nature**.
- Physics explains **how the universe works**, from the smallest particles to the largest galaxies.



# Main Areas of Physics

---

- **Mechanics** – motion, force, energy, work, power.
- **Heat & Thermodynamics** – temperature, heat, laws of energy.
- **Waves & Optics** – sound, light, lenses, mirrors.
- **Electricity & Magnetism** – charges, current, circuits, magnetic fields.
- **Modern Physics** – atoms, nuclei, relativity, quantum physics.
- **Astrophysics & Cosmology** – study of space, stars, and the universe.



# Role of Physics in Daily Life

---

- Electricity, mobile phones, internet, and computers.
- Medical technologies (X-rays, ultrasound, MRI).
- Transportation (cars, airplanes, rockets).
- Communication (satellites, radio, TV).
- Understanding nature (earthquakes, climate, space).



# Methods of Study in Physics

---

- **Observation** – noticing natural phenomena.
- **Hypothesis** – proposing an explanation.
- **Experimentation** – testing under controlled conditions.
- **Laws & Theories** – universal principles (e.g., Newton's laws, laws of motion).



# Importance of Physics

---

- Explains the **laws of nature**.
- Provides the **foundation for engineering, technology, and medicine**.
- Develops **logical and analytical thinking**.
- Helps improve the **quality of life** through innovations.

# Physical Quantities and Units

---

- **Physical Quantities**
- A **physical quantity** is any measurable property of a body or phenomenon.
- It is expressed in **two parts**:
  - **Numerical value** (magnitude)
  - **Unit** (standard of measurement)
-  Example: Length of a table = **2.0 m**
- “2.0” = numerical value
- “m” (meter) = unit

# Types of Physical Quantities

---

- **Base (Fundamental) Quantities**
- Independent, cannot be derived from others.
- Examples: Length, Mass, Time, Temperature, Electric current, Amount of substance, Luminous intensity.
- **Derived Quantities**
- Obtained from base quantities by multiplication/division.
- Examples:
  - Area = Length  $\times$  Width ( $\text{m}^2$ )
  - Volume = Length $^3$  ( $\text{m}^3$ )
  - Speed = Distance / Time ( $\text{m/s}$ )
  - Force = Mass  $\times$  Acceleration ( $\text{kg}\cdot\text{m/s}^2$ )

# International System of Units (SI Units)

---

- To avoid confusion, scientists use **SI Units** (International System of Units).
- It is a globally accepted system.

# International System of Units (SI Units)

---

| Quantity            | Symbol         | SI Unit  | Symbol |
|---------------------|----------------|----------|--------|
| Length              | l              | meter    | m      |
| Mass                | m              | kilogram | kg     |
| Time                | t              | second   | s      |
| Electric Current    | I              | ampere   | A      |
| Temperature         | T              | kelvin   | K      |
| Amount of Substance | n              | mole     | mol    |
| Luminous Intensity  | I <sub>v</sub> | candela  | cd     |

# Prefixes for Multiples & Submultiples

---

| Prefix | Symbol | Value              |
|--------|--------|--------------------|
| kilo   | k      | $10^3 = 1000$      |
| centi  | c      | $10^{-2} = 1/100$  |
| milli  | m      | $10^{-3} = 1/1000$ |
| micro  | $\mu$  | $10^{-6}$          |
| nano   | n      | $10^{-9}$          |
| mega   | M      | $10^6$             |
| giga   | G      | $10^9$             |

# Importance of Units

---

- Provide a **standard** for measurement.
- Make data **understandable and comparable** worldwide.
- Help in **scientific accuracy** and practical use.