

Ultrastructure of a Bacterial Cell

Presented by: Dr. Uswa Fazal
Fsc part(1)

Ultrastructure of a Bacterial Cell


Introduction to Bacteria.

Bacteria have a straightforward structure.

- ❑ **Single-Celled Organisms:** Composed of one cell, lacking a nucleus and organelles.
- ❑ **Classification:** Classified as prokaryotic organisms due to the absence of a defined nucleus
- ❑ **Classification:** Classified as prokaryotic organisms due to the absence of a defined nucleus

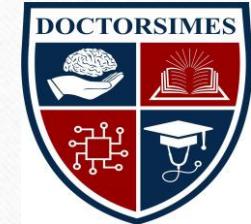
Versatility of Bacteria

❑ Survival in Harsh Conditions:

- Capable of living in extreme environments.

❑ Extremophiles:

- Organisms that thrive under extreme conditions.


Types of Extremophiles

- ❑ **Thermophiles:** Heat-loving bacteria that thrive in high-temperature environments.
- ❑ **Acidophiles:** Bacteria that flourish in acidic environments, often found in highly acidic waters.
- ❑ **Alkaliphiles:** Bacteria that thrive in alkaline (basic) conditions, found in soda lakes or alkaline soils.

Unique Adaptations of Bacteria

- ❖ **Osmophiles:** Thrive in environments with high solute concentrations, such as sugar-rich solutions.
- ❖ **Barophiles:** Adapted to live under high pressure, typically found in deep-sea environments.
- ❖ **Cryophiles:** Prefer cold temperatures and thrive in icy habitats.

Protective Cell Wall

- ❖ **Peptidoglycan Structure:** Unique structural component of bacterial cell walls, vital for their shape and protection.
- ❖ **Defining Feature:** The cell wall's composition is critical for distinguishing bacteria from other microorganisms.


External Structures

- ❖ **Locomotion Organs:** Some bacteria possess flagella or pili, which aid in movement.
- ❖ **Types of Pili:** Pili can serve as appendages for movement or attachment to surfaces

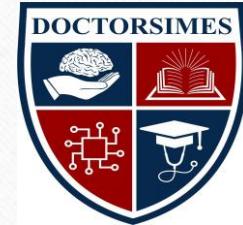
Cellular Characteristics:

- ❖ **Lack of Organelles:** Bacteria do not contain membrane-bound organelles, unlike eukaryotic cells.
- ❖ **Ribosomes:** Sites for protein synthesis, essential for bacterial function and growth.

Genetic Material

- ❖ **DNA and Plasmids:** In addition to main DNA, bacteria contain circular DNA called plasmids.
- ❖ **Antibiotic Resistance:** Plasmids can carry genes that confer resistance to antibiotics, posing challenges in treatment.

Reproduction in Bacteria



Overview of Bacterial Reproduction:

- **Definition of Reproduction:** The process of producing offspring from parent organisms.
- **Bacterial Reproduction Methods:** Bacteria primarily reproduce asexually, but can also engage in sexual reproduction.

Asexual Reproduction in Bacteria

➤ Characteristics of Asexual Reproduction:

- ✓ Parents produce genetically identical offspring.
- ✓ Quick and efficient since no mate is required.

➤ Single-Celled Entities:

- ✓ Bacteria are unicellular and lack membrane-bound organelles, enabling rapid replication.

Modes of Reproduction

➤ Predominantly Asexual:

While bacteria can reproduce sexually, they primarily do so asexually.

➤ Common Asexual Method:

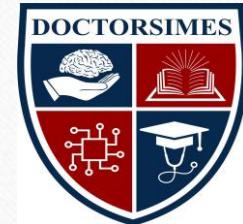
Binary fission is the most prevalent form of asexual reproduction in bacteria.


Binary Fission Process

- **Overview of Binary Fission:** A single bacterium divides to form two identical daughter cells.
- **Steps Involved:**
 - i. **DNA Replication:** The DNA is replicated, resulting in two identical copies.
 - ii. **Cell Elongation:** The bacterium elongates, and the DNA strands migrate to opposite poles.
 - iii. **Septum Formation:** A septum forms in the center, dividing the cell into two distinct daughter cells.

Final Outcome

➤ Genetic Consistency:


Each daughter cell inherits a complete copy of the original DNA.

➤ Importance of Binary Fission:

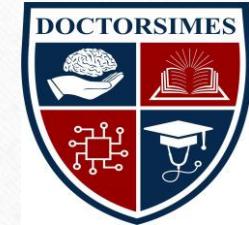
Ensures rapid population increase under favorable conditions

Budding in Bacterial Reproduction

Overview of Budding:

- ❑ **Definition of Budding:** A form of asexual reproduction where small outgrowths, or buds, form on a parent bacterial cell.
- ❑ **Significance:** Enables the formation of new individuals from a single parent without the need for mating.

Process of Budding



- ❑ **Mechanism of Formation:** Buds arise from a specific location on the mother cell through localized cell division.
- ❑ **Concurrent Nucleus Division:** During bud formation, the nucleus divides to ensure that genetic material is shared

Nuclear and Cytoplasmic Transfer

- ❑ **Nucleus Division:** Some portions of the nucleus, along with a small amount of cytoplasm, are transferred into the bud.
- ❑ **Cytoplasmic Contribution:** A portion of the mother's cytoplasm also enters the bud, providing essential cellular components.

Maturation of the Bud

- ❑ **Growth of the Bud:** The bud develops into an individual organism, undergoing growth and maturation.
- ❑ **Separation Process:** Once fully formed and mature, the bud detaches from the mother cell to become an independent bacterium.

Importance of Budding

- ❑ **Advantages of Asexual Reproduction:** Rapid population increase without the need for genetic exchange.
- ❑ **Survival Strategy:** Effective in stable environments where conditions are favorable for growth.

Conidia Formation in Filamentous Bacteria

- ❖ **Definition:** Conidia formation is a type of asexual reproduction in filamentous bacteria.
- ❖ **Filamentous Structure:** Specific bacteria exhibit a filamentous morphology conducive to conidia production.

The Conidiophore

- ❖ **Specialized Structure:** Conidia are formed in a structure called the conidiophore, which resembles a funnel.
- ❖ **Transverse Septation:** The formation involves the development of transverse septa at the filament's end.

Development of Conidia

- ❖ **From Mother Cell to Conidium:** The mother cell produces a conidium, a small, spherical structure that can vary in shape.
- ❖ **Distinctive Features:** Conidia have a structure defined by a body created by a transverse septum located at the apex of the filament.

Asexual Reproduction Process

- ❖ **Formation of New Mycelium:** Conidia enable the development of new mycelium in favorable environments.
- ❖ **Fragmentation:** This process can lead to fragmentation, allowing new cells to originate from the original cell, facilitating propagation.

Thank You :)